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Abstract. Soil fungi play important roles in the functioning of ecosystems, but they are challenging to measure. Using a con-

tinental scale dataset, we developed and evaluated a new method to estimate the relative abundance of the dominant phyla

and diversity of fungi in Australian soil. The method relies on the development of spectro-transfer functions with state-of-

the-art machine learning and using publicly available data on soil and environmental proxies for edaphic, climatic, biotic and

topographic factors, and visible–near infrared (vis–NIR) wavelengths, to estimate the relative abundances of the Ascomy-5

cota, Basidiomycota, Glomeromycota, Mortierellomycota and Mucoromycota and community diversity measured with the

abundance-based coverage estimator (ACE) index. The machine learning algorithms tested were partial least squares regres-

sion (PLSR), random forest (RF), Cubist, support vector machines (SVM), Gaussian process regression (GPR), XG-boost

(XGB) and one-dimensional convolutional neural networks (1D-CNNs). The spectro-transfer functions were validated with a

10-fold cross-validation (n = 577). The 1D-CNNs outperformed the other algorithms and could explain between 45 and 73 %10

of fungal relative abundance and diversity. The models were interpretable, and showed that soil nutrients, pH, bulk density, an

ecosystem water balance (a proxy for aridity) and net primary productivity were important predictors, as were specific vis–NIR

wavelengths that correspond to organic functional groups, iron oxide and clay minerals. Estimates of the relative abundance

for Mortierellomycota and Mucoromycota produced R2 ≥ 0.60, while estimates of the abundance of the Ascomycota and

Basidiomycota produced R2 values of 0.5 and 0.58, respectively. The spectro-transfer functions for the Glomeromycota and15

diversity were the poorest with R2 values of 0.48 and 0.45, respectively. There is no doubt that the method provides estimates

that are less accurate than more direct measurements with conventional molecular approaches. However, once the spectro-

transfer functions are developed, they can be used with very little cost, and could serve to supplement the more expensive and

laborious molecular approaches for a better understanding of soil fungal abundance and diversity under different agronomic

and ecological settings.20
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1 Introduction

Soil fungi are important components of microbial communities, which inhabit dynamic soil environments. They play critical

functional roles as decomposers, mutualists, and pathogens (Li et al., 2019). They impact nutrient cycling and ecosystem

services, such as soil carbon fixation, fertility and productivity (Vetrovsky et al., 2019; Delgadobaquerizo et al., 2016). Given25

the important functions that soil fungi perform, it is important to better characterise and understand their communities over

large scales. However, data on soil fungi are few or largely unavailable because the measurement of soil fungi, which needs

field sampling, followed by culture-based analysis or DNA sequencing, are laborious, time-consuming and costly. Using soil

sensing technologies, such as spectroscopy together with molecular approaches could greatly improve the utility of fungal

inventory data (Hart et al., 2020).30

Improvements in soil analytical methodologies provide an opportunity to increase sampling density for deriving a more

detailed understanding of soil properties, their spatial variation, soil condition, and to improve decision-making. Spectroscopic

techniques, such as visible–near infrared (vis–NIR) spectroscopy, have been developed to provide rapid estimates of soil prop-

erties (Viscarra Rossel et al., 2016). Soil vis–NIR spectra are largely nonspecific because of the overlapping absorptions of soil

constituents (Stenberg et al., 2010). Complex absorption patterns generated from soil constituents need to be mathematically35

extracted from the spectra and there are various methods that can be used to model soil properties with spectra. They include

multivariate statistical methods such as partial least squares regression (PLSR), and machine learning with different algorithms,

including neural networks (Viscarra Rossel and Behrens, 2010; Morellos et al., 2016; Liu et al., 2018; Tsakiridis et al., 2020;

Shen and Viscarra Rossel, 2021). Thus, vis–NIR spectra can integrally characterize the soil’s mineral-organic composition, and

combined with multivariate modelling, soil spectroscopy provides a rapid and cost-efficient method for soil characterisation40

(Viscarra Rossel and Brus, 2018).

Although there are no vis–NIR absorptions that can be directly assigned to soil microbial communities or diversity, soil

microbes are dependent on the fundamental soil composition: its minerals, organic matter and water content. For example, they

rely on organic matter for energy, on clay minerals and iron oxides for the supply of essential elements to grow (Müller, 2015).

These organic and mineral properties are well represented and have a direct response in soil vis–NIR spectra (Stenberg et al.,45

2010). Therefore, vis–NIR spectra have been used to model various functional soil properties, such as soil organic carbon,

cation exchange capacity, pH, clay content (Shi et al., 2015), as well as soil microbial communities (Davinic et al., 2012; Yang

et al., 2019). For the latter, if the microbial biomass is present in the soil organic matter, then the spectra might well detect their

functional constituents.

There are studies that use environmental proxies, (or covariates) at continental and global scales to model soil microbial50

properties using various methods, including linear regressions and machine learning (Serna-Chavez et al., 2013; Griffiths et al.,

2011; Vetrovsky et al., 2019; Yang et al., 2019; Delgadobaquerizo et al., 2018a). However, we found no published studies that

used vis–NIR spectra or a combination of spectra with other soil and environmental covariates (i.e. spectro-transfer functions)

to infer fungal abundance or diversity. In a previous study, Yang et al. (2019) showed that vis–NIR spectra combined with other

soil and environmental data could estimate soil bacterial abundance and diversity. Here, our hypotheses are: (i) spectroscopic55
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models with machine learning can estimate soil fungal abundance and diversity at the continental scale, and (ii) spectro-transfer

functions with additional predictors to capture other soil and environmental properties that affect soil fungi will improve the

accuracy of the estimates.

Thus, our objective is to develop and test the spectroscopic method for estimating soil fungal abundance and diversity over

a large scale, and our aims are to:60

(i) Compare the modelling of fungal abundance and diversity with vis–NIR spectra only (spectroscopic models), with

readily available soil and environmental data only (environmental models) and with the combined set of vis–NIR spectra

and readily available soil and environmental data (spectro-transfer functions), and

(ii) Test different statistical and machine learning algorithms for the modelling.

2 Methods65

2.1 Soil sampling and laboratory analyses

We used 577 soil samples from the Biomes of Australian Soil Environments (BASE) project (Bissett et al., 2016). In that

project, the sampling was undertaken from soil that supports diverse plant communities across Australia. Samples came from

two soil depths (0–0.1m and 0.2–0.3m), covering five typical Australian ecosystem types, including cropland, forest, grassland,

shrubland, and woodland (Fig. 1a). Each sample was partitioned into subsamples for DNA sequencing (see below) and air-70

dried and crushed to a particle size of ≤2 mm for physicochemical analyses. The soil properties analyzed were total organic

carbon and soil nutrients (e.g. ammonium, nitrate, phosphorus, potassium), pH, exchangeable cations (aluminium, sodium,

magnesium, calcium), and texture (sand, silt and clay). The methods are described in (Bissett et al., 2016). Subsamples of the

≤2 mm portions were used for the spectroscopic analysis (see below).
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Figure 1. (a) Sampling sites and the range of ecosystem types across Australia (b) Relative abundances of dominant fungal phyla and

unclassified "Others" taxa in five ecosystem types. Individual abundance of each phylum and their cumulative abundance were shown in the

graph.

2.2 Derivation of fungal abundance and diversity75

The methods for DNA extraction and sequencing are detailed in Bissett et al. (2016). Briefly, the soil DNA was extracted in

triplicate following methods used in the Earth Microbiome Project1. Sequencing occurred with an Illumina MiSEQ, which

is described in the BASE protocols2. Summarising, amplicons targeting the fungal ITS region were prepared and sequenced

for each sample. The ITS amplicons were sequenced using 300 bp paired end sequencing. ITS1 regions were extracted using

ITSx Bengtsson-Palme et al. (2013). Sequences comprising full and partial ITS1 regions were passed to the Operational80

Taxonomic Units (OTU) selection and assigning workflow Bissett et al. (2016), which followed guidelines described in the

BASE protocols3 and in Bissett et al. (2016). These are based on the most current version of UNITE database (version 8.2,

updated 15-01-2020) for molecular identification of fungi Nilsson et al. (2018). We used the final sample-by-OTU data matrix

and annotated taxonomy file for the analyses of fungal diversity and composition.

In total, there were more than 60 million quality sequences across the samples, with 11,090–2,177,737 sequences per sample85

(mean 107,310). Sequences clustered into 202,200 OTUs at 97% similarity, with an average of 666 OTUs per sample. To

eliminate bias on the diversity comparison caused by unbalanced sequencing, samples were resampled at the same sequencing

depth using functions of the RAM library in the R software(R Core Team, 2014). Here, 11 000 sequences (the median number

of sequences in the samples) were used as the resampling depth, because the majority of samples only had this amount of

sequences, but also because the rarefaction curves started to flatten out for all 577 samples at this sequencing depth. This90

1http://www.Earthmicrobiome.Org/emp-standard-protocols/dna-extraction-protocol/
2https://ccgapps.Com.Au/bpa-metadata/base/information
3https://ccgapps.com.au/bpa-metadata/base/information
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suggested that the sequencing number was sufficient (Fig. S1 in the Supplementary Information). To quantify community

diversity, we then calculated the abundance-based coverage estimator (ACE) index (Lozupone and Knight, 2008) from the

resampled sample-by-OTU matrix. The relative abundance of fungal phyla were then determined using the ratio of sequences

number classified at each phylum to the total number of sequences of each sample.

2.3 Soil visible–near-infrared spectroscopy95

We measured the diffuse reflectance spectra of all air-dried ≤ 2 mm soil samples with the Labspec® vis–NIR spectrometer

(Malvern Panalytical, Boulder, Colorado, USA) following the protocols described in Viscarra Rossel et al. (2016). The spectral

range of the spectrometer is 350 to 2500 nm. Due to the low signal-to-noise ratio at the start and end of each spectrum, for our

analysis, we kept only spectra in the range between 380 and 2450 nm. As the spectra are highly collinear, to reduce redundancy

in the data, we re-sampled them to a resolution of 10 nm. The measurements were performed with the instruments high intensity100

contact probe (PaNalytic, Boulder, Colorado, USA), and a Spectralon® white reference panel was used for calibration once

every 10 measurements.

To interpret the spectra, we fitted each reflectance (R) spectrum with a convex hull and computed the deviations from

the hull (Clark and Roush, 1984). These continuum removed (CR) spectra help to identify characteristic absorptions of soil

constituents. For the modelling, we first transformed the R spectra to apparent absorbance, using A = log10(1/R), and then105

used a Savitzky-Golay filter with a window of size 7 and a fitting polynomial of degree 2 and first derivative Savitzky and

Golay (1964) to remove baseline effects and to improve the signal to noise ratio.

2.4 Modelling soil fungal abundance and diversity

We developed spectroscopic models, environmental models, and spectro-transfer functions for estimating soil fungal abundance

and diversity (see below). The spectroscopic models used only the vis–NIR spectra, the environmental models used only the110

publicly available soil and environmental data that represent the soil forming factors soil, climate, vegetation, terrain and parent

material (Jenny, 1994), and the spectro-transfer functions used the vis—NIR spectra together with soil and environmental data.

We assembled a set of readily available soil and environmental maps that represented climate, terrain, vegetation, and parent

material. To relate the these covariates to the fungal data, we extracted values from these maps using the geographic coordinates

of the sample set. The soil property data came from the Australia-wide fine spatial resolution (90 × 90 m) digital soil maps of115

total organic carbon, total nitrogen, total phosphorus, bulk density, effective cation exchange capacity, available water capacity,

pH, and soil texture (sand, silt, and clay) (Viscarra Rossel et al., 2015), as well as maps of the clay minerals kaolinite, illite,

and smectite (Viscarra Rossel, 2011). To represent climate, we used data on mean annual temperature (MAT), mean annual

precipitation (MAP), solar radiation, and evapotranspiration (Xu and Hutchinson, 2011) and the Prescott index (PI) (Prescott,

1950), which is calculated as the ratio of precipitation to evapotranspiration. To capture functional landscape characteristics,120

we used a digital elevation model (DEM) from the 3-arc second shuttle radar topographic mission (SRTM) and derived terrain

attributes (Gallant et al., 2011). To represent vegetation, we used data on net primary productivity (NPP) (Haverd et al., 2013),

and on the fraction of photosynthetically active radiation intercepted by the sunlit canopy of the evergreen (Fpar-e) and woody
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(Fpar-r) vegetation (Donohue et al., 2009). To represent parent material, we used gamma radiometrics, which comprises data on

potassium, uranium, and thorium (Minty et al., 2009). Supplementary Table S1 lists these data and their main characteristics.125

The spectra and the covariates were centred and scaled before the modelling of fungal abundance and diversity. The al-

gorithms that we tested were partial least squares regression (PLSR) (Wold et al., 2001), gaussian process regression(GPR)

(Rasmussen and Williams, 2005), support vector machines (SVM) (Suykens et al., 2002), random forest(RF) (Breiman, 2001a),

CUBIST (Quinlan, 1992), extreme gradient boost (XGBoost) (Friedman, 2001) and optimised 1D convolutional neural networks

(1D-CNNs) (Shen and Viscarra Rossel, 2021). The algorithms and their implementation are described in the Supplementary130

Information linked to this article.

The predictability of the spectroscopic models and the spectro-transfer functions were assessed using 10-fold cross-validations.

We evaluated the estimates using the coefficient of determination (R2), the root mean squared error (RMSE), which measures

inaccuracy, the standard deviation of the error (SDE), which measures imprecision and the mean error (ME), which measures

bias (Viscarra Rossel and McBratney, 1998). Inaccuracy (RMSE) embraces both the bias (ME) and the imprecision (SDE)135

(Viscarra Rossel and McBratney, 1998). Their relationship is given by RMSE2 = ME2 + SDE2.

To interpret the models, we calculated their variable importance as follows. For the PLSR, GPR, SVM, Cubist, RF and

XGBoost models, variable importance was calculated using the varImp function in the caret library (Kuhn et al., 2008) of the

software R. For the 1D-CNNs, we used the permutation importance (Breiman, 2001b; Fisher et al., 2019). In the results, we

only report the variable importance of the model that performed best.140

3 Results

In total, more than 60 million quality filtered sequences in the whole dataset were obtained, with an average of 107 310

sequences per sample. When we clustered the sequences at 97% similarity level 202 200 OTUs were detected. Each sample

had an average of 666 OTUs. Sixteen phyla were identified in total and 5 dominant phyla, with relative abundance > 2%, were

approximately present in most soils. This represented nearly 88% of the sequence number. The relative abundance of fungal145

phyla varied across ecosystem types (Fig. 1b).

Ascomycota (mean 0.43, SD 0.21) was the most abundant phylum, followed by Basidiomycota (mean 0.37, SD 0.24) (Ta-

ble 1). Dominant fungal phyla showed a high degree of variability, with an averaging 83% coefficient of variation (CV). The

ACE index showed a wide range from 81 to 1823 (mean 563, SD 315). The rich soil biodiversity of the data resulted from the

extensitive soil sampling taken from diverse vegetation, soils, and climates across Australia.150
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Table 1. The descriptive statistics of relative abundance of dominant phyla and community diversity (n = 577).

Variables Mean Median St. Dev. Range Coeff. var. (%)

Abundance

Ascomycota 0.43 0.42 0.21 0.04–0.98 49

Basidiomycota 0.37 0.32 0.24 0.01–0.92 65

Mortierellomycota 0.04 0.02 0.04 0.00–0.36 100

Glomeromycota 0.02 0.01 0.01 0.00–0.41 50

Mucoromycota 0.02 0.01 0.03 0.00–0.55 150

Diversity

ACE 563 503 315 81–1823 56

Fig. 2 shows the CR spectra with the characteristic absorptions. Soil with different fungal diversity show variations in

absorptions, particularly around those that are due to Fe-oxides (400–800 nm), minerals (around 1400 nm, 1900 nm and

2200 nm) and organic compounds (throughout the vis–NIR spectrum) (Stenberg et al., 2010). Soil with the lower fungal

diversity showed a more pronounced absorbance around 600 nm as shown in Fig. 2. In our study, the soil with lower fungal

diversity mainly come from the central and western Australia. In these areas, soil subjected to intense weathering regimes and155

can accumulate large quantities Fe oxides (total soil Fe2O3 larger than 10%) in surficial environments, and strongly absorbed

in the visible region (Viscarra Rossel et al., 2010). These highly iron-rich lateritic soil occur with acidic pH, high H2O and Al

activities, and has been shown not conductive to the development of fungal diversity (Viscarra Rossel et al., 2010).

Figure 2. Continuum removed (CR) spectra curves colored by fungal ACE diversity
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3.1 Modelling

With the different algorithms, the spectroscopic models (i.e. with only the vis–NIR spectra) could explain 9–45% of the vari-160

ation in fungal phyla relative abundance and diversity. Spectroscopic models of the Glomeromycota were the least successful,

with R2 values ranging from 0.09 using SVM to 0.30 using 1D-CNN, while those of the Mortierellomycota produced the

largest R2 values, ranging from 0.32 using XGBoost to 0.45 using 1D-CNN (Fig. 3). The models of diversity had R2 values

ranging from 0.14 with PLSR to 0.35 using 1D-CNN.

The models derived with the readily available soil and environment data could explain 14–60% of the variation in fun-165

gal phyla relative abundance and diversity with the different algorithms. These environmental models were generally better

performed than spectroscopic models, with an average 10% additional variance explained.

Combining the vis–NIR spectra and soil and environmental data further improved the modelling and their explanatory power.

The spectro-transfer functions (i.e. with the combined set of vis–NIR spectra and other soil and environmental data) performed,

on average, 20% better than the spectroscopic models and 10% better than environmental models. Depending on the algorithm170

used, they could explain between 17–73% of the variation in fungal phyla relative abundance and diversity (Fig. 3). The

spectro-transfer functions of Glomeromycota produced R2 values ranging from 0.17 using PLSR to 0.48 using 1D-CNN. The

spectro-transfer functions of the Mortierellomycota and Mucoromycota produced the largest R2 values ranging from 0.51 to

0.73 (Fig. 3).

Generally, PLSR and GPR were the least successful methods, while SVM, RF, Cubist and XGBoost were similarly successful175

for estimating fungal phyla relative abundance and diversity (Fig. 3). The 1D-CNN spectro-transfer functions were 13–31%

more successful compared to other machine learning methods as they could explain between 45–73% of the variation in fungal

relative abundance and diversity (Fig. 3).
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Figure 3. The coefficient of determination (R2) for the vis–NIR spectroscopic models, soil and environmental models and the spectro-

trasnfer functions that used combined set of the vis–NIR and readily available soil and environmental covariates, to estimate soil fungal

phyla abundance and diversity (n = 577). The different statistical and machine learning methods were partial least squares regression (PLSR),

gaussian process regression (GPR), support vector machines (SVM), random forest(RF), CUBIST, extreme gradient boost (XGBoost) and

optimised 1D convolutional neural networks (1D-CNNs).

3.2 1D-CNNs spectro-transfer functions

The final architectures and optimised hyperparameters of the 1D-CNNs are given in Supplementary Table S3. As deep learning180

models are dataset dependent, the optimisation returned a different architecture for each response variable. Overall, the 1D-

CNNs used simple architectures with less than 4 convolutional layers (Supplementary Table S3). Scatter plots of the measured

versus estimated values of relative abundance and diversity using 1D-CNNs spectro-transfer functions and their validation

statistics are shown in Fig. 4. Estimates of the relative abundance of Mortierellomycota and Mucoromycota produced R2

values ≥ 0.60, while estimates of Ascomycota and Basidiomycota produced 0.5≤ R2 < 0.6. Estimates of Glomeromycota185

and ACE produced 0.4≤ R2 < 0.5. The estimates were relatively unbiased (small ME), although generally small values

were overestimated and large values were underestimated (Fig. 4). Imprecision contributed to the majority of the RMSE.

The imprecision of our estimates was a result of absence of repeated sampling and high adaptability of soil fungi to the wide

range of environments.
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Figure 4. Performance of the CNN spectro-transfer functions for estimate of the relative abundance of dominant fungal phyla and diversity

index. The spectro-transfer functions used vis–NIR spectra with other publicly available data on soil environmental variables. The plots show

measured vs. estimated values using a 10-folds cross validation. The gray points represent no overlap with any other points, and the black

points represent at least two points that overlap.

The important variables in the 1D-CNNs spectro-transfer functions of phyla relative abundance and diversity were vis–NIR190

wavelengths representing organic matter, iron oxide and clay minerals (Fig. 5).
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Figure 5. Important predictors of relative abundance of fungal phyla and diversity index measured by the variable importance of the 1D-

CNNs spectro-transfer functions (n = 577) derived with publicly accessible data that represent soil (S), climate (C), vegetation (V), terrain

(T), parent material (PM) and visible–near infrared (vis–NIR) spectra. The dots in red, orange, and blue color indicated the most, medium,

and least important level. The importance value for the majority of wavelengths were low and close to zero value, thus these wavelengths

were not shown to make the figure clearer.

The identified wavelengths mostly coincided with absorptions that are related to carbon functional groups found in organic

matter, including C-H, N-H, C-O, with a smaller number of wavelengths coinciding with those that are related to clay minerals
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and Fe-oxides (Table 2). The organic functional groups, C-H alkyl and methyls, N-H of amines, and C-O of carbohydrates,

which might indicate the presence of relatively labile forms of carbon, and were important in the models of fungal phyla but not195

of ACE diversity. The C=O of amides and carboxylic acids, which represent stable forms of carbon were not as important in

modeling (Fig. 5). Other wavelengths that represent Fe-oxides and clay minerals were also important in the models, indicating

the different ecological niches and physiological characteristics (Table 2).

Table 2. Absorption band assignment for the most important vis–NIR wavelengths in the 1D-CNN models. The assignment of vis–NIR

absorptions from Viscarra Rossel and Behrens (2010); Stenberg et al. (2010).

ACE Ascomycota Basidiomycota Mortierellomycota Glomeromycota Mucoromycota

Fe-oxides 390 390 410, 460

Clay minerals 2190, 2240 1330, 2190, 2210 1330, 2140 1360, 2140 1330, 2150

Organics

C-H of aromatics 1630, 1650

N-H of amine 2070, 2090, 2110 1010 2060 780, 2030 2060

C-H of alkyl asymmetric- 890, 1290 1250, 1280 1740 1270, 1280

symmetric doublet

C=O of carboxylic acids

C=O of amides

C-H of aliphatics

C-H of methyls 1840, 2440 1770, 1800, 1810 1880

1830, 2450

C-OH of phenolics

C-O of carbohydrates 2260 2410, 2290 2300 2300

Other soil properties, such as total organic carbon and pH were important variables in the spectro-transfer functions of

Ascomycota and Basidiomycota, and fungal diversity. Total organic carbon and total nitrogen were important in the spectro-200

transfer functions of Mortierellomycota and Mucoromycota and bulk density was important in the spectro-transfer functions of

Glomeromycota, Ascomycota and ACE diversity (Fig. 5). As well as soil properties, climatic factors such as the PI and PET,

and vegetation, represented by Fpar-e and NPP were also important in the modelling of fungal phyla relative abundance and

community diversity. The variables that we used to represent terrain, and parent material exerted less influence in the models

(Fig. 5).205

4 Discussion

Soil fungi play essential and diverse functional roles in ecosystem. However, they are challenging to investigate due to labo-

rious, time-consuming and costly field sampling, and laboratory analysis. A paucity in the availability of soil microbial data

is thought to be one of the main contributors to the uncertainty of soil health assessment and ecosystem management. Here,

we show that spectro-transfer functions with readily accessible vis–NIR spectra and publicly available soil and environmental210

data can be developed to estimate soil fungal abundance and diversity. Our approach provides a new opportunity to infer the
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continuous distribution of soil fungal community at a large area with the less sampling density and consequently less labora-

tory analysis costs. The approach will complement molecular approaches for the assessment, characterization and improved

understanding of soil fungal communities and their associated functions at different scales (Hart et al., 2020).

Out of the seven statistical and machine learning models tested, the optimised 1D-CNNs were the most successful for215

estimating fungal phyla relative abundance and diversity, consistently producing the highest cross-validation R2 values. The

reason might be that the 1D-CNNs can automatically ‘learn’ the non-linear and complex relations between the soil fungal

variables and the covariables. The models extract large features during convolution and adjust the weights of each covariate

during the model iterations, which are also back-propagated (Breiman, 2001b; Lecun et al., 2015). Although 1D-CNNs have

been used for the spectroscopy modeling of soil physicochemical properties (Ng et al., 2019; Tsakiridis et al., 2020; Shen and220

Viscarra Rossel, 2021), to our best knowledge, this present study is the first to develop spectro-transfer functions for estimating

soil fungal abundance and diversity.

Our results shown that the 1D-CNN spectroscopic models (with only vis–NIR spectra) could explain, on average, 40% of

the variation in the relative abundance of fungal phyla and community diversity (R2 values of 0.30–0.45). It is because these

spectra characterise the soil’s organic and mineral composition, which serves to supply energy and the elements that fungi use225

to promote vital activities (Müller, 2015). Microbial activities are closely associated with the types and amounts of organic

matter and our results indicate that the most important vis–NIR wavelengths in the modelling of fungal relative abundance and

community diversity corresponds to functional groups in the different types of organic compounds in the soils (Viscarra Rossel

and Hicks, 2015) (Fig. 5 and Table S2 in Supplementary information).

The 1D-CNN spectro-transfer functions (with vis–NIR spectra and other soil and environmental data) improved the mod-230

elling. This suggests that other variables that represent climate, soil nutrients, pH, vegetation, are important predictors of fungal

growth. Their use in the spectro-transfer functions provided additional and supplementary information for the modelling. On

average, these models could explain 60% of the variation in abundance of fungal phyla relative abundance and diversity (R2

values of 0.45–0.73).

The soil organic and mineral composition, represented by the vis–NIR spectra, were the most important predictors in the235

models for fungal relative abundance and community diversity. Additionally, total organic carbon and pH were important

predictors of fungal diversity and the relative abundance of Ascomycota and Basidiomycota. Although most soil fungi do not

require strict pH ranges for habitation and growth (Rousk et al., 2009; Zhao and Shen, 2018), some basophilic or acidophilic

fungi are sensitive to changes in pH (Gai et al., 2006) and saprophytic fungi are thought to be more sensitive to soil pH,

compared to other fungi (Kivlin and Hawkes, 2016). Soil bulk density was an important predictor of fungal diversity and the240

relative abundance of Glomeromycota. Many fungi, including those that form arbuscular mycorrhiza, such as Glomeromycota,

infect plants roots achieving mutualistic symbiosis (Schubler et al., 2001). Denser soil bulk density could reduce the availability

of soil nutrients and water, leading to poor development of plant roots and a smaller infection rate for the symbiosis. The PI and

evapotranspiration were the most important climatic predictors of fungal abundance and diversity in the models. PI represents

the soil-water balance which has been shown to affect soil microbial growth at various studies (Bachar et al., 2010; Blankinship245

et al., 2011; Maestre et al., 2015; Delgadobaquerizo et al., 2018b). Because soil-water stress could strongly restrict microbial
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activity and distribution by controlling the availability of soil nutrients, pH and oxygen (Delgadobaquerizo et al., 2018b). NPP

and Fpar-e were important predictors of fungal diversity and the relative abundance of the five dominant phyla. Larger values

of NPP and Fpar-e occur due to greater biomass production and thus more accumulation of litter and coarse organic matter in

soil. Soil fungi are some of the decomposers of litter and soil organic matter, including cellulose and lignin, which are often250

resistant to bacterial decomposition (Treseder and Lennon, 2015; Nicolas et al., 2019).

5 Conclusions

Deep learning with optimised 1D-CNNs provides a new approach to estimate the relative abundance and diversity of soil fungal

communities. The 1D-CNNs outperformed the six other machine learning methods tested for estimating the relative abundance

of fungal phyla and diversity. The 1D-CNN spectro-transfer (vis–NIR spectra and other soil and environmental data) functions255

produced more accurate estimates (R2 0.45–0.73) compared to the spectroscopic (vis–NIR spectra only) models (R2 0.36–0.55)

and models with the soil and environmental data only (R2 0.38–0.60). As well as the soil organic and mineral composition,

represented by vis–NIR spectra, other edaphic, climatic, and biotic factors including soil nutrients, pH, bulk density, potential

evapotranspiration, the soil-water balance and net primary productivity were important predictors in the modelling. Given the

crucial role of fungi in the functioning of ecosystem, our study helps the development of methods to supplement molecular260

approaches for a better understanding of the diversity and biogeography of soil fungi over large scales.
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